Polymeric forms of carbon in dense lithium carbide.

نویسندگان

  • Xing-Qiu Chen
  • C L Fu
  • C Franchini
چکیده

The immense interest in carbon nanomaterials continues to stimulate intense research activities aimed at realizing carbon nanowires, since linear chains of carbon atoms are expected to display novel and technologically relevant optical, electrical and mechanical properties. Although various allotropes of carbon (e.g., diamond, nanotubes, graphene, etc) are among the best-known materials, it remains challenging to stabilize carbon in the one-dimensional form because of the difficulty of suitably saturating the dangling bonds of carbon. Here, we show through first-principles calculations that ordered polymeric carbon chains can be stabilized in solid Li(2)C(2) under moderate pressure. This pressure-induced phase (above 5 GPa) consists of parallel arrays of twofold zigzag carbon chains embedded in lithium cages, which display a metallic character due to the formation of partially occupied carbon lone-pair states in sp(2)-like hybrids. It is found that this phase remains the most favorable one in a wide range of pressures. At extreme pressure (larger than 215 GPa) a structural and electronic phase transition towards an insulating single-bonded threefold-coordinated carbon network is predicted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using an electrochemical nanobiosensor based on titanium carbide-carbon nanotubes polymeric nanocomposite for the epithelialovarian cancer early detection

Background & Aim: Ovarian cancer is the most lethal among female malignancies. So far, treatment improvements have affected patient survival, but it is still more important to provide an early diagnosis that can detect the disease in its early stages. Therefore, introducing a rapid, accurate, and low-cost method to disease detection can be important and necessary. Methods: This study introduce...

متن کامل

Linear and Hyperbranched Polycarbosilanes with Si-CH2-Si Bridging Groups: A Synthetic Platform for the Construction of Novel Functional Polymeric Materials

Work carried in the authors’ laboratory on Si– CH2–Si bridged polycarbosilanes is reviewed. In pursuit of high-yield polymeric precursors to silicon carbide, convenient synthetic routes to both linear and hyperbranched polycarbosilanes having a ‘[SiH2CH2]n’ compositional formula have been developed. The linear [SiH2CH2]n polymer was prepared by ring-opening polymerization of a substituted disil...

متن کامل

MECHANO-THERMAL REDUCTION OF HEMATITE AND ANATASE MIXTURE BY TWO DIFFERENT FORMS OF CARBON AS REDUCTANT FOR IN-SITU PRODUCTION OF Fe-T iC - NANO CRYSTALLINE COMPOSITE

In this research, two different carbonaceous materials (Graphite:G and Petrocoke:P) were separately compared in terms of the carbothermic reduction of hematite and anatase in order to synthesize Fe-TiC nanocrystalline composite by mechanically activated sintering method. Powders were activated in a planetary high-energy ball mill under argon atmosphere for 0, 2, 5, ...

متن کامل

Hydrogen storage in pillared Li-dispersed boron carbide nanotubes

Ab initio density-functional theory study suggests that pillared Li-dispersed boron carbide nanotubes is capable of storing hydrogen with a mass density higher than 6.0 weight% and a volumetric density higher than 45 g/L. The boron substitution in carbon nanotube greatly enhances the binding energy of Li atom to the nanotube, and this binding energy (~ 2.7 eV) is greater than the cohesive energ...

متن کامل

Two-Dimensional Titanium Carbide MXene As a Cathode Material for Hybrid Magnesium/Lithium-Ion Batteries.

As an alternative to pure lithium-ion, Li+, systems, a hybrid magnesium, Mg2+, and Li+ battery can potentially combine the high capacity, high voltage, and fast Li+ intercalation of Li-ion battery cathodes and the high capacity, low cost, and dendrite-free Mg metal anodes. Herein, we report on the use of two-dimensional titanium carbide, Ti3C2Tx (MXene), as a cathode in hybrid Mg2+/Li+ batterie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 22 29  شماره 

صفحات  -

تاریخ انتشار 2010